Adaptive Traffic Speed Estimation
نویسندگان
چکیده
Active traffic management aims to dynamically manage congestion based on existing and predicted traffic conditions. A challenge in this is that it is not usually possible to process data in real-time and use the output in control algorithms or in traveler information systems. A solution to this is to predict the traffic state based on assessments of current and past measurements. The work described in this paper develops an adaptive forecasting method to predict traffic speeds using dynamic linear models with Bayesian inference from a priori distributions. This study incorporates speeds collected from radar based sensors and validates the results with data collected from Bluetooth traffic monitoring technology. The highly adaptive model is confirmed with estimated traffic speeds during inclement weather and multiple incidents. © 2014 The Authors. Published by Elsevier B.V. Selection and peer-review under responsibility of Elhadi M. Shakshuki.
منابع مشابه
The Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways
The performance of many traffic control strategies depends on how much the traffic flow models have been accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive ...
متن کاملThe Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways
The performance of many traffic control strategies depends on how much the traffic flow models are accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive loop d...
متن کاملAn Adaptive Algorithm for Freeway Speed Estimation with Single-Loop Measurements
Accurate, real-time traffic speed data are important inputs to successful freeway traffic management systems. Unfortunately, vehicle speeds cannot be directly measured by single-loop detectors, which are the most common detectors available in current freeway infrastructures. Algorithms are required to estimate speed using single-loop measurements. In this paper, we present a two-step speed esti...
متن کاملSensorless Speed Control of Switched Reluctance Motor Drive Using the Binary Observer with Online Flux-Linkage Estimation
An adaptive online flux-linkage estimation method for the sensorless control of switched reluctance motor (SRM) drive is presented in this paper. Sensorless operation is achieved through a binary observer based algorithm. In order to avoid using the look up tables of motor characteristics, which makes the system, depends on motor parameters, an adaptive identification algorithm is used to estim...
متن کاملSpeed Observer Design for Linear Induction Motor Drives
In this paper, a neural network model reference adaptive system speed observer is designed, which can be used in speed control of linear induction motors (LIMs). Dynamical equations of LIM have been considered accurate. In other words, the end effect and the electrical losses of the motor have been included in the motor equivalent circuit. Then equations of the reference model and adaptive mode...
متن کاملHarmonics Estimation in Power Systems using a Fast Hybrid Algorithm
In this paper a novel hybrid algorithm for harmonics estimation in power systems is proposed. The estimation of the harmonic components is a nonlinear problem due to the nonlinearity of phase of sinusoids in distorted waveforms. Most researchers implemented nonlinear methods to extract the harmonic parameters. However, nonlinear methods for amplitude estimation increase time of convergence. Hen...
متن کامل